
Perl version 5.10.0 documentation - integer

Page 1http://perldoc.perl.org

NAME
integer - Perl pragma to use integer arithmetic instead of floating point

SYNOPSIS
 use integer;
 $x = 10/3;
 # $x is now 3, not 3.33333333333333333

DESCRIPTION
This tells the compiler to use integer operations from here to the end
 of the enclosing BLOCK. On
many machines, this doesn't matter a great
 deal for most computations, but on those without floating
point
 hardware, it can make a big difference in performance.

Note that this only affects how most of the arithmetic and relational operators handle their operands
and results, and not how all
 numbers everywhere are treated. Specifically, use integer; has the

effect that before computing the results of the arithmetic operators
 (+, -, *, /, %, +=, -=, *=, /=, %=, and
unary minus), the comparison
 operators (<, <=, >, >=, ==, !=, <=>), and the bitwise operators (|, &,
 ^,
<<, >>, |=, &=, ^=, <<=, >>=), the operands have their fractional
 portions truncated (or floored), and
the result will have its
 fractional portion truncated as well. In addition, the range of
 operands and
results is restricted to that of familiar two's complement
 integers, i.e., -(2**31) .. (2**31-1) on 32-bit
architectures, and
 -(2**63) .. (2**63-1) on 64-bit architectures. For example, this code

 use integer;
 $x = 5.8;
 $y = 2.5;
 $z = 2.7;
 $a = 2**31 - 1; # Largest positive integer on 32-bit machines
 $, = ", ";
 print $x, -$x, $x + $y, $x - $y, $x / $y, $x * $y, $y == $z, $a, $a +
1;

will print: 5.8, -5, 7, 3, 2, 10, 1, 2147483647, -2147483648

Note that $x is still printed as having its true non-integer value of
 5.8 since it wasn't operated on. And
note too the wrap-around from the
 largest positive integer to the largest negative one. Also,
arguments
 passed to functions and the values returned by them are not affected
 by use integer;.
E.g.,

 srand(1.5);
 $, = ", ";
 print sin(.5), cos(.5), atan2(1,2), sqrt(2), rand(10);

will give the same result with or without use integer; The power
 operator ** is also not affected,
so that 2 ** .5 is always the
 square root of 2. Now, it so happens that the pre- and post- increment
 and
decrement operators, ++ and --, are not affected by use integer;
 either. Some may rightly
consider this to be a bug -- but at least it's
 a long-standing one.

Finally, use integer; also has an additional affect on the bitwise
 operators. Normally, the
operands and results are treated as unsigned integers, but with use integer; the operands and
results
 are signed. This means, among other things, that ~0 is -1, and -2 &
 -5 is -6.

Internally, native integer arithmetic (as provided by your C compiler)
 is used. This means that Perl's
own semantics for arithmetic
 operations may not be preserved. One common source of trouble is the

modulus of negative numbers, which Perl does one way, but your hardware
 may do another.

 % perl -le 'print (4 % -3)'
 -2

Perl version 5.10.0 documentation - integer

Page 2http://perldoc.perl.org

 % perl -Minteger -le 'print (4 % -3)'
 1

See "Pragmatic Modules" in perlmodlib, "Integer Arithmetic" in perlop

