
Perl version 5.10.0 documentation - perlopentut

Page 1http://perldoc.perl.org

NAME
perlopentut - tutorial on opening things in Perl

DESCRIPTION
Perl has two simple, built-in ways to open files: the shell way for
 convenience, and the C way for
precision. The shell way also has 2- and
 3-argument forms, which have different semantics for
handling the filename.
 The choice is yours.

Open à la shell
Perl's open function was designed to mimic the way command-line
 redirection in the shell works.
Here are some basic examples
 from the shell:

 $ myprogram file1 file2 file3
 $ myprogram < inputfile
 $ myprogram > outputfile
 $ myprogram >> outputfile
 $ myprogram | otherprogram
 $ otherprogram | myprogram

And here are some more advanced examples:

 $ otherprogram | myprogram f1 - f2
 $ otherprogram 2>&1 | myprogram -
 $ myprogram <&3
 $ myprogram >&4

Programmers accustomed to constructs like those above can take comfort
 in learning that Perl
directly supports these familiar constructs using
 virtually the same syntax as the shell.

Simple Opens
The open function takes two arguments: the first is a filehandle,
 and the second is a single string
comprising both what to open and how
 to open it. open returns true when it works, and when it fails,

returns a false value and sets the special variable $! to reflect
 the system error. If the filehandle was
previously opened, it will
 be implicitly closed first.

For example:

 open(INFO, "datafile") || die("can't open datafile: $!");
 open(INFO, "< datafile") || die("can't open datafile: $!");
 open(RESULTS,"> runstats") || die("can't open runstats: $!");
 open(LOG, ">> logfile ") || die("can't open logfile: $!");

If you prefer the low-punctuation version, you could write that this way:

 open INFO, "< datafile" or die "can't open datafile: $!";
 open RESULTS,"> runstats" or die "can't open runstats: $!";
 open LOG, ">> logfile " or die "can't open logfile: $!";

A few things to notice. First, the leading less-than is optional.
 If omitted, Perl assumes that you want
to open the file for reading.

Note also that the first example uses the || logical operator, and the
 second uses or, which has
lower precedence. Using || in the latter
 examples would effectively mean

 open INFO, ("< datafile" || die "can't open datafile: $!");

Perl version 5.10.0 documentation - perlopentut

Page 2http://perldoc.perl.org

which is definitely not what you want.

The other important thing to notice is that, just as in the shell,
 any whitespace before or after the
filename is ignored. This is good,
 because you wouldn't want these to do different things:

 open INFO, "<datafile"
 open INFO, "< datafile"
 open INFO, "< datafile"

Ignoring surrounding whitespace also helps for when you read a filename
 in from a different file, and
forget to trim it before opening:

 $filename = <INFO>; # oops, \n still there
 open(EXTRA, "< $filename") || die "can't open $filename: $!";

This is not a bug, but a feature. Because open mimics the shell in
 its style of using redirection arrows
to specify how to open the file, it
 also does so with respect to extra whitespace around the filename
itself
 as well. For accessing files with naughty names, see Dispelling the Dweomer.

There is also a 3-argument version of open, which lets you put the
 special redirection characters into
their own argument:

 open(INFO, ">", $datafile) || die "Can't create $datafile: $!";

In this case, the filename to open is the actual string in $datafile,
 so you don't have to worry about
$datafile containing characters
 that might influence the open mode, or whitespace at the
beginning of
 the filename that would be absorbed in the 2-argument version. Also,
 any reduction of
unnecessary string interpolation is a good thing.

Indirect Filehandles
open's first argument can be a reference to a filehandle. As of
 perl 5.6.0, if the argument is
uninitialized, Perl will automatically
 create a filehandle and put a reference to it in the first argument,

like so:

 open(my $in, $infile) or die "Couldn't read $infile: $!";
 while (<$in>) {
	 # do something with $_
 }
 close $in;

Indirect filehandles make namespace management easier. Since filehandles
 are global to the current
package, two subroutines trying to open INFILE will clash. With two functions opening indirect
filehandles
 like my $infile, there's no clash and no need to worry about future
 conflicts.

Another convenient behavior is that an indirect filehandle automatically
 closes when it goes out of
scope or when you undefine it:

 sub firstline {
	 open(my $in, shift) && return scalar <$in>;
	 # no close() required
 }

Pipe Opens
In C, when you want to open a file using the standard I/O library,
 you use the fopen function, but
when opening a pipe, you use the popen function. But in the shell, you just use a different redirection

character. That's also the case for Perl. The open call remains the same--just its argument differs.

Perl version 5.10.0 documentation - perlopentut

Page 3http://perldoc.perl.org

If the leading character is a pipe symbol, open starts up a new
 command and opens a write-only
filehandle leading into that command.
 This lets you write into that handle and have what you write
show up on
 that command's standard input. For example:

 open(PRINTER, "| lpr -Plp1") || die "can't run lpr: $!";
 print PRINTER "stuff\n";
 close(PRINTER) || die "can't close lpr: $!";

If the trailing character is a pipe, you start up a new command and open a
 read-only filehandle leading
out of that command. This lets whatever that
 command writes to its standard output show up on your
handle for reading.
 For example:

 open(NET, "netstat -i -n |") || die "can't fork netstat: $!";
 while (<NET>) { } # do something with input
 close(NET) || die "can't close netstat: $!";

What happens if you try to open a pipe to or from a non-existent
 command? If possible, Perl will
detect the failure and set $! as
 usual. But if the command contains special shell characters, such as
> or *, called 'metacharacters', Perl does not execute the
 command directly. Instead, Perl runs the
shell, which then tries to
 run the command. This means that it's the shell that gets the error
 indication.
In such a case, the open call will only indicate
 failure if Perl can't even run the shell. See "How can I
capture STDERR from an external command?" in perlfaq8 to see how to cope with
 this. There's also
an explanation in perlipc.

If you would like to open a bidirectional pipe, the IPC::Open2
 library will handle this for you. Check out
"Bidirectional Communication with Another Process" in perlipc

The Minus File
Again following the lead of the standard shell utilities, Perl's open function treats a file whose name is
a single minus, "-", in a
 special way. If you open minus for reading, it really means to access
 the
standard input. If you open minus for writing, it really means to
 access the standard output.

If minus can be used as the default input or default output, what happens
 if you open a pipe into or
out of minus? What's the default command it
 would run? The same script as you're currently running!
This is actually
 a stealth fork hidden inside an open call. See "Safe Pipe Opens" in perlipc for
details.

Mixing Reads and Writes
It is possible to specify both read and write access. All you do is
 add a "+" symbol in front of the
redirection. But as in the shell,
 using a less-than on a file never creates a new file; it only opens an

existing one. On the other hand, using a greater-than always clobbers
 (truncates to zero length) an
existing file, or creates a brand-new one
 if there isn't an old one. Adding a "+" for read-write doesn't
affect
 whether it only works on existing files or always clobbers existing ones.

 open(WTMP, "+< /usr/adm/wtmp")
 || die "can't open /usr/adm/wtmp: $!";

 open(SCREEN, "+> lkscreen")
 || die "can't open lkscreen: $!";

 open(LOGFILE, "+>> /var/log/applog")
 || die "can't open /var/log/applog: $!";

The first one won't create a new file, and the second one will always
 clobber an old one. The third one
will create a new file if necessary
 and not clobber an old one, and it will allow you to read at any point

in the file, but all writes will always go to the end. In short,
 the first case is substantially more common

Perl version 5.10.0 documentation - perlopentut

Page 4http://perldoc.perl.org

than the second and third
 cases, which are almost always wrong. (If you know C, the plus in
 Perl's
open is historically derived from the one in C's fopen(3S),
 which it ultimately calls.)

In fact, when it comes to updating a file, unless you're working on
 a binary file as in the WTMP case
above, you probably don't want to
 use this approach for updating. Instead, Perl's -i flag comes to
 the
rescue. The following command takes all the C, C++, or yacc source
 or header files and changes all
their foo's to bar's, leaving
 the old version in the original filename with a ".orig" tacked
 on the end:

 $ perl -i.orig -pe 's/\bfoo\b/bar/g' *.[Cchy]

This is a short cut for some renaming games that are really
 the best way to update textfiles. See the
second question in perlfaq5 for more details.

Filters
One of the most common uses for open is one you never
 even notice. When you process the ARGV
filehandle using <ARGV>, Perl actually does an implicit open on each file in @ARGV. Thus a program
called like this:

 $ myprogram file1 file2 file3

can have all its files opened and processed one at a time
 using a construct no more complex than:

 while (<>) {
 # do something with $_
 }

If @ARGV is empty when the loop first begins, Perl pretends you've opened
 up minus, that is, the
standard input. In fact, $ARGV, the currently
 open file during <ARGV> processing, is even set to "-"
 in
these circumstances.

You are welcome to pre-process your @ARGV before starting the loop to
 make sure it's to your liking.
One reason to do this might be to remove
 command options beginning with a minus. While you can
always roll the
 simple ones by hand, the Getopts modules are good for this:

 use Getopt::Std;

 # -v, -D, -o ARG, sets $opt_v, $opt_D, $opt_o
 getopts("vDo:");

 # -v, -D, -o ARG, sets $args{v}, $args{D}, $args{o}
 getopts("vDo:", \%args);

Or the standard Getopt::Long module to permit named arguments:

 use Getopt::Long;
 GetOptions("verbose" => \$verbose, # --verbose
 "Debug" => \$debug, # --Debug
 "output=s" => \$output);
	 # --output=somestring or --output somestring

Another reason for preprocessing arguments is to make an empty
 argument list default to all files:

 @ARGV = glob("*") unless @ARGV;

You could even filter out all but plain, text files. This is a bit
 silent, of course, and you might prefer to
mention them on the way.

Perl version 5.10.0 documentation - perlopentut

Page 5http://perldoc.perl.org

 @ARGV = grep { -f && -T } @ARGV;

If you're using the -n or -p command-line options, you
 should put changes to @ARGV in a BEGIN{}
block.

Remember that a normal open has special properties, in that it might
 call fopen(3S) or it might called
popen(3S), depending on what its
 argument looks like; that's why it's sometimes called "magic open".

Here's an example:

 $pwdinfo = `domainname` =~ /^(\(none\))?$/
 ? '< /etc/passwd'
 : 'ypcat passwd |';

 open(PWD, $pwdinfo)
 or die "can't open $pwdinfo: $!";

This sort of thing also comes into play in filter processing. Because <ARGV> processing employs the
normal, shell-style Perl open,
 it respects all the special things we've already seen:

 $ myprogram f1 "cmd1|" - f2 "cmd2|" f3 < tmpfile

That program will read from the file f1, the process cmd1, standard
 input (tmpfile in this case), the f2
file, the cmd2 command,
 and finally the f3 file.

Yes, this also means that if you have files named "-" (and so on) in
 your directory, they won't be
processed as literal files by open.
 You'll need to pass them as "./-", much as you would for the rm
program,
 or you could use sysopen as described below.

One of the more interesting applications is to change files of a certain
 name into pipes. For example,
to autoprocess gzipped or compressed
 files by decompressing them with gzip:

 @ARGV = map { /^\.(gz|Z)$/ ? "gzip -dc $_ |" : $_ } @ARGV;

Or, if you have the GET program installed from LWP,
 you can fetch URLs before processing them:

 @ARGV = map { m#^\w+://# ? "GET $_ |" : $_ } @ARGV;

It's not for nothing that this is called magic <ARGV>.
 Pretty nifty, eh?

Open à la C
If you want the convenience of the shell, then Perl's open is
 definitely the way to go. On the other
hand, if you want finer precision
 than C's simplistic fopen(3S) provides you should look to Perl's
sysopen, which is a direct hook into the open(2) system call.
 That does mean it's a bit more involved,
but that's the price of precision.

sysopen takes 3 (or 4) arguments.

 sysopen HANDLE, PATH, FLAGS, [MASK]

The HANDLE argument is a filehandle just as with open. The PATH is
 a literal path, one that doesn't
pay attention to any greater-thans or
 less-thans or pipes or minuses, nor ignore whitespace. If it's
there,
 it's part of the path. The FLAGS argument contains one or more values
 derived from the Fcntl
module that have been or'd together using the
 bitwise "|" operator. The final argument, the MASK, is
optional; if
 present, it is combined with the user's current umask for the creation
 mode of the file. You
should usually omit this.

Although the traditional values of read-only, write-only, and read-write
 are 0, 1, and 2 respectively,

Perl version 5.10.0 documentation - perlopentut

Page 6http://perldoc.perl.org

this is known not to hold true on some
 systems. Instead, it's best to load in the appropriate constants
first
 from the Fcntl module, which supplies the following standard flags:

 O_RDONLY Read only
 O_WRONLY Write only
 O_RDWR Read and write
 O_CREAT Create the file if it doesn't exist
 O_EXCL Fail if the file already exists
 O_APPEND Append to the file
 O_TRUNC Truncate the file
 O_NONBLOCK Non-blocking access

Less common flags that are sometimes available on some operating
 systems include O_BINARY,
O_TEXT, O_SHLOCK, O_EXLOCK, O_DEFER, O_SYNC, O_ASYNC, O_DSYNC, O_RSYNC, O_NOCTTY,
O_NDELAY and O_LARGEFILE. Consult your open(2)
 manpage or its local equivalent for details.
(Note: starting from
 Perl release 5.6 the O_LARGEFILE flag, if available, is automatically
 added to the
sysopen() flags because large files are the default.)

Here's how to use sysopen to emulate the simple open calls we had
 before. We'll omit the || die
$! checks for clarity, but make sure
 you always check the return values in real code. These aren't
quite
 the same, since open will trim leading and trailing whitespace,
 but you'll get the idea.

To open a file for reading:

 open(FH, "< $path");
 sysopen(FH, $path, O_RDONLY);

To open a file for writing, creating a new file if needed or else truncating
 an old file:

 open(FH, "> $path");
 sysopen(FH, $path, O_WRONLY | O_TRUNC | O_CREAT);

To open a file for appending, creating one if necessary:

 open(FH, ">> $path");
 sysopen(FH, $path, O_WRONLY | O_APPEND | O_CREAT);

To open a file for update, where the file must already exist:

 open(FH, "+< $path");
 sysopen(FH, $path, O_RDWR);

And here are things you can do with sysopen that you cannot do with
 a regular open. As you'll see,
it's just a matter of controlling the
 flags in the third argument.

To open a file for writing, creating a new file which must not previously
 exist:

 sysopen(FH, $path, O_WRONLY | O_EXCL | O_CREAT);

To open a file for appending, where that file must already exist:

 sysopen(FH, $path, O_WRONLY | O_APPEND);

To open a file for update, creating a new file if necessary:

 sysopen(FH, $path, O_RDWR | O_CREAT);

Perl version 5.10.0 documentation - perlopentut

Page 7http://perldoc.perl.org

To open a file for update, where that file must not already exist:

 sysopen(FH, $path, O_RDWR | O_EXCL | O_CREAT);

To open a file without blocking, creating one if necessary:

 sysopen(FH, $path, O_WRONLY | O_NONBLOCK | O_CREAT);

Permissions à la mode
If you omit the MASK argument to sysopen, Perl uses the octal value
 0666. The normal MASK to
use for executables and directories should
 be 0777, and for anything else, 0666.

Why so permissive? Well, it isn't really. The MASK will be modified
 by your process's current umask.
A umask is a number representing disabled permissions bits; that is, bits that will not be turned on
 in
the created files' permissions field.

For example, if your umask were 027, then the 020 part would
 disable the group from writing, and the
007 part would disable others
 from reading, writing, or executing. Under these conditions, passing
sysopen 0666 would create a file with mode 0640, since 0666 & ~027
 is 0640.

You should seldom use the MASK argument to sysopen(). That takes
 away the user's freedom to
choose what permission new files will have.
 Denying choice is almost always a bad thing. One
exception would be for
 cases where sensitive or private data is being stored, such as with mail

folders, cookie files, and internal temporary files.

Obscure Open Tricks
Re-Opening Files (dups)

Sometimes you already have a filehandle open, and want to make another
 handle that's a duplicate of
the first one. In the shell, we place an
 ampersand in front of a file descriptor number when doing
redirections.
 For example, 2>&1 makes descriptor 2 (that's STDERR in Perl)
 be redirected into
descriptor 1 (which is usually Perl's STDOUT).
 The same is essentially true in Perl: a filename that
begins with an
 ampersand is treated instead as a file descriptor if a number, or as a
 filehandle if a
string.

 open(SAVEOUT, ">&SAVEERR") || die "couldn't dup SAVEERR: $!";
 open(MHCONTEXT, "<&4") || die "couldn't dup fd4: $!";

That means that if a function is expecting a filename, but you don't
 want to give it a filename because
you already have the file open, you
 can just pass the filehandle with a leading ampersand. It's best to

use a fully qualified handle though, just in case the function happens
 to be in a different package:

 somefunction("&main::LOGFILE");

This way if somefunction() is planning on opening its argument, it can
 just use the already opened
handle. This differs from passing a handle,
 because with a handle, you don't open the file. Here you
have something
 you can pass to open.

If you have one of those tricky, newfangled I/O objects that the C++
 folks are raving about, then this
doesn't work because those aren't a
 proper filehandle in the native Perl sense. You'll have to use
fileno()
 to pull out the proper descriptor number, assuming you can:

 use IO::Socket;
 $handle = IO::Socket::INET->new("www.perl.com:80");
 $fd = $handle->fileno;
 somefunction("&$fd"); # not an indirect function call

It can be easier (and certainly will be faster) just to use real
 filehandles though:

Perl version 5.10.0 documentation - perlopentut

Page 8http://perldoc.perl.org

 use IO::Socket;
 local *REMOTE = IO::Socket::INET->new("www.perl.com:80");
 die "can't connect" unless defined(fileno(REMOTE));
 somefunction("&main::REMOTE");

If the filehandle or descriptor number is preceded not just with a simple
 "&" but rather with a "&="
combination, then Perl will not create a
 completely new descriptor opened to the same place using
the dup(2)
 system call. Instead, it will just make something of an alias to the
 existing one using the
fdopen(3S) library call. This is slightly more
 parsimonious of systems resources, although this is less
a concern
 these days. Here's an example of that:

 $fd = $ENV{"MHCONTEXTFD"};
 open(MHCONTEXT, "<&=$fd") or die "couldn't fdopen $fd: $!";

If you're using magic <ARGV>, you could even pass in as a
 command line argument in @ARGV
something like "<&=$MHCONTEXTFD",
 but we've never seen anyone actually do this.

Dispelling the Dweomer
Perl is more of a DWIMmer language than something like Java--where DWIM
 is an acronym for "do
what I mean". But this principle sometimes leads
 to more hidden magic than one knows what to do
with. In this way, Perl
 is also filled with dweomer, an obscure word meaning an enchantment.

Sometimes, Perl's DWIMmer is just too much like dweomer for comfort.

If magic open is a bit too magical for you, you don't have to turn
 to sysopen. To open a file with
arbitrary weird characters in
 it, it's necessary to protect any leading and trailing whitespace.
 Leading
whitespace is protected by inserting a "./" in front of a
 filename that starts with whitespace. Trailing
whitespace is protected
 by appending an ASCII NUL byte ("\0") at the end of the string.

 $file =~ s#^(\s)#./$1#;
 open(FH, "< $file\0") || die "can't open $file: $!";

This assumes, of course, that your system considers dot the current
 working directory, slash the
directory separator, and disallows ASCII
 NULs within a valid filename. Most systems follow these
conventions,
 including all POSIX systems as well as proprietary Microsoft systems.
 The only vaguely
popular system that doesn't work this way is the
 "Classic" Macintosh system, which uses a colon
where the rest of us
 use a slash. Maybe sysopen isn't such a bad idea after all.

If you want to use <ARGV> processing in a totally boring
 and non-magical way, you could do this first:

 # "Sam sat on the ground and put his head in his hands.
 # 'I wish I had never come here, and I don't want to see
 # no more magic,' he said, and fell silent."
 for (@ARGV) {
 s#^([^./])#./$1#;
 $_ .= "\0";
 }
 while (<>) {
 # now process $_
 }

But be warned that users will not appreciate being unable to use "-"
 to mean standard input, per the
standard convention.

Paths as Opens
You've probably noticed how Perl's warn and die functions can
 produce messages like:

 Some warning at scriptname line 29, <FH> line 7.

Perl version 5.10.0 documentation - perlopentut

Page 9http://perldoc.perl.org

That's because you opened a filehandle FH, and had read in seven records
 from it. But what was the
name of the file, rather than the handle?

If you aren't running with strict refs, or if you've turned them off
 temporarily, then all you have to
do is this:

 open($path, "< $path") || die "can't open $path: $!";
 while (<$path>) {
 # whatever
 }

Since you're using the pathname of the file as its handle,
 you'll get warnings more like

 Some warning at scriptname line 29, </etc/motd> line 7.

Single Argument Open
Remember how we said that Perl's open took two arguments? That was a
 passive prevarication. You
see, it can also take just one argument.
 If and only if the variable is a global variable, not a lexical, you
can pass open just one argument, the filehandle, and it will get the path from the global scalar
variable of the same name.

 $FILE = "/etc/motd";
 open FILE or die "can't open $FILE: $!";
 while (<FILE>) {
 # whatever
 }

Why is this here? Someone has to cater to the hysterical porpoises.
 It's something that's been in Perl
since the very beginning, if not
 before.

Playing with STDIN and STDOUT
One clever move with STDOUT is to explicitly close it when you're done
 with the program.

 END { close(STDOUT) || die "can't close stdout: $!" }

If you don't do this, and your program fills up the disk partition due
 to a command line redirection, it
won't report the error exit with a
 failure status.

You don't have to accept the STDIN and STDOUT you were given. You are
 welcome to reopen them
if you'd like.

 open(STDIN, "< datafile")
	 || die "can't open datafile: $!";

 open(STDOUT, "> output")
	 || die "can't open output: $!";

And then these can be accessed directly or passed on to subprocesses.
 This makes it look as though
the program were initially invoked
 with those redirections from the command line.

It's probably more interesting to connect these to pipes. For example:

 $pager = $ENV{PAGER} || "(less || more)";
 open(STDOUT, "| $pager")
	 || die "can't fork a pager: $!";

Perl version 5.10.0 documentation - perlopentut

Page 10http://perldoc.perl.org

This makes it appear as though your program were called with its stdout
 already piped into your
pager. You can also use this kind of thing
 in conjunction with an implicit fork to yourself. You might do
this
 if you would rather handle the post processing in your own program,
 just in a different process:

 head(100);
 while (<>) {
 print;
 }

 sub head {
 my $lines = shift || 20;
 return if $pid = open(STDOUT, "|-"); # return if parent
 die "cannot fork: $!" unless defined $pid;
 while (<STDIN>) {
 last if --$lines < 0;
 print;
 }
 exit;
 }

This technique can be applied to repeatedly push as many filters on your
 output stream as you wish.

Other I/O Issues
These topics aren't really arguments related to open or sysopen,
 but they do affect what you do with
your open files.

Opening Non-File Files
When is a file not a file? Well, you could say when it exists but
 isn't a plain file. We'll check whether
it's a symbolic link first,
 just in case.

 if (-l $file || ! -f _) {
 print "$file is not a plain file\n";
 }

What other kinds of files are there than, well, files? Directories,
 symbolic links, named pipes,
Unix-domain sockets, and block and character
 devices. Those are all files, too--just not plain files.
This isn't
 the same issue as being a text file. Not all text files are plain files.
 Not all plain files are text
files. That's why there are separate -f
 and -T file tests.

To open a directory, you should use the opendir function, then
 process it with readdir, carefully
restoring the directory name if necessary:

 opendir(DIR, $dirname) or die "can't opendir $dirname: $!";
 while (defined($file = readdir(DIR))) {
 # do something with "$dirname/$file"
 }
 closedir(DIR);

If you want to process directories recursively, it's better to use the
 File::Find module. For example, this
prints out all files recursively
 and adds a slash to their names if the file is a directory.

 @ARGV = qw(.) unless @ARGV;
 use File::Find;
 find sub { print $File::Find::name, -d && '/', "\n" }, @ARGV;

This finds all bogus symbolic links beneath a particular directory:

Perl version 5.10.0 documentation - perlopentut

Page 11http://perldoc.perl.org

 find sub { print "$File::Find::name\n" if -l && !-e }, $dir;

As you see, with symbolic links, you can just pretend that it is
 what it points to. Or, if you want to know
what it points to, then readlink is called for:

 if (-l $file) {
 if (defined($whither = readlink($file))) {
 print "$file points to $whither\n";
 } else {
 print "$file points nowhere: $!\n";
 }
 }

Opening Named Pipes
Named pipes are a different matter. You pretend they're regular files,
 but their opens will normally
block until there is both a reader and
 a writer. You can read more about them in "Named Pipes" in
perlipc.
 Unix-domain sockets are rather different beasts as well; they're
 described in "Unix-Domain
TCP Clients and Servers" in perlipc.

When it comes to opening devices, it can be easy and it can be tricky.
 We'll assume that if you're
opening up a block device, you know what
 you're doing. The character devices are more interesting.
These are
 typically used for modems, mice, and some kinds of printers. This is
 described in "How do I
read and write the serial port?" in perlfaq8
 It's often enough to open them carefully:

 sysopen(TTYIN, "/dev/ttyS1", O_RDWR | O_NDELAY | O_NOCTTY)
		 # (O_NOCTTY no longer needed on POSIX systems)
 or die "can't open /dev/ttyS1: $!";
 open(TTYOUT, "+>&TTYIN")
 or die "can't dup TTYIN: $!";

 $ofh = select(TTYOUT); $| = 1; select($ofh);

 print TTYOUT "+++at\015";
 $answer = <TTYIN>;

With descriptors that you haven't opened using sysopen, such as
 sockets, you can set them to be
non-blocking using fcntl:

 use Fcntl;
 my $old_flags = fcntl($handle, F_GETFL, 0)
 or die "can't get flags: $!";
 fcntl($handle, F_SETFL, $old_flags | O_NONBLOCK)
 or die "can't set non blocking: $!";

Rather than losing yourself in a morass of twisting, turning ioctls,
 all dissimilar, if you're going to
manipulate ttys, it's best to
 make calls out to the stty(1) program if you have it, or else use the

portable POSIX interface. To figure this all out, you'll need to read the
 termios(3) manpage, which
describes the POSIX interface to tty devices,
 and then POSIX, which describes Perl's interface to
POSIX. There are
 also some high-level modules on CPAN that can help you with these games.

Check out Term::ReadKey and Term::ReadLine.

Opening Sockets
What else can you open? To open a connection using sockets, you won't use
 one of Perl's two open
functions. See "Sockets: Client/Server Communication" in perlipc for that. Here's an example. Once
you have it, you can use FH as a bidirectional filehandle.

Perl version 5.10.0 documentation - perlopentut

Page 12http://perldoc.perl.org

 use IO::Socket;
 local *FH = IO::Socket::INET->new("www.perl.com:80");

For opening up a URL, the LWP modules from CPAN are just what
 the doctor ordered. There's no
filehandle interface, but
 it's still easy to get the contents of a document:

 use LWP::Simple;
 $doc = get('http://www.linpro.no/lwp/');

Binary Files
On certain legacy systems with what could charitably be called terminally
 convoluted (some would
say broken) I/O models, a file isn't a file--at
 least, not with respect to the C standard I/O library. On
these old
 systems whose libraries (but not kernels) distinguish between text and
 binary streams, to
get files to behave properly you'll have to bend over
 backwards to avoid nasty problems. On such
infelicitous systems, sockets
 and pipes are already opened in binary mode, and there is currently no

way to turn that off. With files, you have more options.

Another option is to use the binmode function on the appropriate
 handles before doing regular I/O on
them:

 binmode(STDIN);
 binmode(STDOUT);
 while (<STDIN>) { print }

Passing sysopen a non-standard flag option will also open the file in
 binary mode on those systems
that support it. This is the equivalent of
 opening the file normally, then calling binmode on the handle.

 sysopen(BINDAT, "records.data", O_RDWR | O_BINARY)
 || die "can't open records.data: $!";

Now you can use read and print on that handle without worrying
 about the non-standard system
I/O library breaking your data. It's not
 a pretty picture, but then, legacy systems seldom are. CP/M will
be
 with us until the end of days, and after.

On systems with exotic I/O systems, it turns out that, astonishingly
 enough, even unbuffered I/O using
sysread and syswrite might do
 sneaky data mutilation behind your back.

 while (sysread(WHENCE, $buf, 1024)) {
 syswrite(WHITHER, $buf, length($buf));
 }

Depending on the vicissitudes of your runtime system, even these calls
 may need binmode or
O_BINARY first. Systems known to be free of
 such difficulties include Unix, the Mac OS, Plan 9, and
Inferno.

File Locking
In a multitasking environment, you may need to be careful not to collide
 with other processes who
want to do I/O on the same files as you
 are working on. You'll often need shared or exclusive locks
 on
files for reading and writing respectively. You might just
 pretend that only exclusive locks exist.

Never use the existence of a file -e $file as a locking indication,
 because there is a race condition
between the test for the existence of
 the file and its creation. It's possible for another process to
create
 a file in the slice of time between your existence check and your attempt
 to create the file.
Atomicity is critical.

Perl's most portable locking interface is via the flock function,
 whose simplicity is emulated on
systems that don't directly support it
 such as SysV or Windows. The underlying semantics may affect

Perl version 5.10.0 documentation - perlopentut

Page 13http://perldoc.perl.org

how
 it all works, so you should learn how flock is implemented on your
 system's port of Perl.

File locking does not lock out another process that would like to
 do I/O. A file lock only locks out
others trying to get a lock, not
 processes trying to do I/O. Because locks are advisory, if one process

uses locking and another doesn't, all bets are off.

By default, the flock call will block until a lock is granted.
 A request for a shared lock will be granted
as soon as there is no
 exclusive locker. A request for an exclusive lock will be granted as
 soon as
there is no locker of any kind. Locks are on file descriptors,
 not file names. You can't lock a file until
you open it, and you can't
 hold on to a lock once the file has been closed.

Here's how to get a blocking shared lock on a file, typically used
 for reading:

 use 5.004;
 use Fcntl qw(:DEFAULT :flock);
 open(FH, "< filename") or die "can't open filename: $!";
 flock(FH, LOCK_SH) 	 or die "can't lock filename: $!";
 # now read from FH

You can get a non-blocking lock by using LOCK_NB.

 flock(FH, LOCK_SH | LOCK_NB)
 or die "can't lock filename: $!";

This can be useful for producing more user-friendly behaviour by warning
 if you're going to be
blocking:

 use 5.004;
 use Fcntl qw(:DEFAULT :flock);
 open(FH, "< filename") or die "can't open filename: $!";
 unless (flock(FH, LOCK_SH | LOCK_NB)) {
	 $| = 1;
	 print "Waiting for lock...";
	 flock(FH, LOCK_SH) or die "can't lock filename: $!";
	 print "got it.\n"
 }
 # now read from FH

To get an exclusive lock, typically used for writing, you have to be
 careful. We sysopen the file so it
can be locked before it gets
 emptied. You can get a nonblocking version using LOCK_EX | LOCK_NB
.

 use 5.004;
 use Fcntl qw(:DEFAULT :flock);
 sysopen(FH, "filename", O_WRONLY | O_CREAT)
 or die "can't open filename: $!";
 flock(FH, LOCK_EX)
 or die "can't lock filename: $!";
 truncate(FH, 0)
 or die "can't truncate filename: $!";
 # now write to FH

Finally, due to the uncounted millions who cannot be dissuaded from
 wasting cycles on useless vanity
devices called hit counters, here's
 how to increment a number in a file safely:

 use Fcntl qw(:DEFAULT :flock);

Perl version 5.10.0 documentation - perlopentut

Page 14http://perldoc.perl.org

 sysopen(FH, "numfile", O_RDWR | O_CREAT)
 or die "can't open numfile: $!";
 # autoflush FH
 $ofh = select(FH); $| = 1; select ($ofh);
 flock(FH, LOCK_EX)
 or die "can't write-lock numfile: $!";

 $num = <FH> || 0;
 seek(FH, 0, 0)
 or die "can't rewind numfile : $!";
 print FH $num+1, "\n"
 or die "can't write numfile: $!";

 truncate(FH, tell(FH))
 or die "can't truncate numfile: $!";
 close(FH)
 or die "can't close numfile: $!";

IO Layers
In Perl 5.8.0 a new I/O framework called "PerlIO" was introduced.
 This is a new "plumbing" for all the
I/O happening in Perl; for the
 most part everything will work just as it did, but PerlIO also brought
 in
some new features such as the ability to think of I/O as "layers".
 One I/O layer may in addition to just
moving the data also do
 transformations on the data. Such transformations may include
 compression
and decompression, encryption and decryption, and transforming
 between various character
encodings.

Full discussion about the features of PerlIO is out of scope for this
 tutorial, but here is how to
recognize the layers being used:

The three-(or more)-argument form of open is being used and the
 second argument contains
something else in addition to the usual '<', '>', '>>', '|' and their variants,
 for example:

 open(my $fh, "<:crlf", $fn);

The two-argument form of binmode is being used, for example

 binmode($fh, ":encoding(utf16)");

For more detailed discussion about PerlIO see PerlIO;
 for more detailed discussion about Unicode
and I/O see perluniintro.

SEE ALSO
The open and sysopen functions in perlfunc(1);
 the system open(2), dup(2), fopen(3), and fdopen(3)
manpages;
 the POSIX documentation.

AUTHOR and COPYRIGHT
Copyright 1998 Tom Christiansen.

This documentation is free; you can redistribute it and/or modify it
 under the same terms as Perl itself.

Irrespective of its distribution, all code examples in these files are
 hereby placed into the public
domain. You are permitted and
 encouraged to use this code in your own programs for fun or for profit

as you see fit. A simple comment in the code giving credit would be
 courteous but is not required.

HISTORY
First release: Sat Jan 9 08:09:11 MST 1999

